
©Souradeep Das

NSFW
Smart Contract Vulnerabilities and

Vyper

Souradeep Das
 Next Tech Lab,

Ex- UC Berkeley Blockchain Lab

©Souradeep Das

 Hi!
I’m Dave!

©Souradeep Das

How far has Ethereum come in 4 years?

 Total addresses

 >50m
 Daily active users

 95.54k
 24h transactions

 1.58m
 Smart Contracts

 >1m

Business logic coded as software had been automating
and revolutionising the world around us, unless ...

©Souradeep Das

©Souradeep Das

Smart Contracts will radically change the world, but what tends to get lost
in the noise is that coding a smart contract is extremely challenging

“One bad programmer can easily create two
new jobs a year”

 ~David Parnas

©Souradeep Das

34,200
Ethereum Smart Contracts are vulnerable to hacking due to poor coding that

contains bugs

About

1 in 20 Smart Contracts
Courtesy- Finding The Greedy, Prodigal, and Suicidal
Contracts at Scale, NUS

©Souradeep Das

A walk down the
memory lane -

Solidity
Vulnerabilities

“We are
products of our
past, but we
don't have
 to be prisoners
of it.”
 ~Rick Warren

©Souradeep Das

1. Arithmetic Overflows/ Underflows

PoWHC

©Souradeep Das

Can occur when a fixed size variable is required to store a number that
is outside the range of the variable’s type.

Ex- uint8 a = 0;
 a=a+257; // a=1

Vulnerability

©Souradeep Das

Preventive Techniques

Use OpenZeppelin’s SafeMath Library which has functions to
replace math operators like addition, subtraction and multiplication

PoWHC

Ponzi scheme smart contract called Proof of Weak Hands
Coin by 4chan
866 ether was liberated due to the vulnerability

©Souradeep Das

2. Default Visibilities

Parity Wallet First Hack

©Souradeep Das

The default visibility specifier for smart contracts are ‘public’.

The issue comes when developers mistakenly ignore visibility
specifiers on functions which should be private (or only callable
within the contract itself)

Vulnerability

Source: Dr Adrian Manning

©Souradeep Das

Preventive Techniques

Always specify the visibility of all functions.
Solidity shows warnings for functions with no explicit visibility set

Parity First Hack

Functions were accidentally left public, an attacker was able to call these
functions, resetting the ownership to the attackers address.

About $31M worth of Ether was stolen from primarily three
wallets

©Souradeep Das

Lets create

 Dave Token

Buy Token 1 Ether = 1 DaveToken

Transfer Token

Check Balance

©Souradeep Das

Challenge 1

©Souradeep Das

http://tiny.cc/souradeep

©Souradeep Das

Balances[msg.sender] - amount >= 0

uint uint

Always greater than 0 !
Require tends to be useless

©Souradeep Das

3. DAO Hack

Re-entrancy

©Souradeep Das

Can occur when sending Ether to an unknown address

A contract can be created at an external address with malicious code in
the Fallback function

The malicious code calls back a function and re-enters code execution

Vulnerability

fallback()

©Souradeep Das

Ethereum Foundation issued a critical update to rollback the hack.
This resulted in Ethereum being forked into Ethereum
Classic and Ethereum.

On June 17th 2016, The DAO was hacked and 3.6 million
Ether ($50 Million) were stolen using the reentrancy attack.

©Souradeep Das

Preventive Techniques

Use transfer() function instead of call.value() for sending ethers
- only sends 2300 gas - not enough for re-entering

Ensure all logic that changes state variables happen before ether
is sent out of contract

Adding Mutex as a state variable to lock the contract

©Souradeep Das

4. Delegatecall

Parity Wallet Second Hack

©Souradeep Das

Delegatecall overrides the second contract’s storage with the
storage of the calling contract.

Can lead to changing the owner of the first contract by changing the
first contracts storage.

Vulnerability

Source: Ethernaut

©Souradeep Das

Preventive Techniques

Use ‘library’ keyword for implementing library contracts

Build state-less libraries so that contracts are not self destructible

Parity Second Hack

Library contract for multisig wallet had this vulnerability
User could get access to library contract and could call the kill()
function
And the contract suicided

©Souradeep Das

Lets create an
Ether Pool!

● Players will have to contribute
to smart contract (Pool)

● The player with most
contributions over time is
chosen as the Leader

● The Leader has control of all
the funds

Contribute

Withdraw All
Only < 0.001 Eth

©Souradeep Das

Challenge - 2

Source: Ethernaut

©Souradeep Das

Two Conditions :

1) msg.value>0

2) senders contribution should be greater than
zero

©Souradeep Das

5. Denial of Service (DoS)

GovernMental

©Souradeep Das

Making the contract inoperable for some time or permanently

Attacker can prevent other transactions from being included
by placing computationally intensive transactions with a high enough
gas price

Vulnerability

Source: Dr Adrian Manning

©Souradeep Das

Preventive Techniques

Avoid looping that can be artificially manipulated by external
users

Favour Pull over Push Payments

GovernMental Hack
Contract required the deletion of a large mapping in order to withdraw
the ether. The deletion of this mapping had a gas cost that
exceeded the block gas limit at the time, and thus was not possible
to withdraw the 1100 ether. The ether was finally obtained with a
transaction that used 2.5M gas

©Souradeep Das

6. Unchecked CALL Return Values

Etherpot

©Souradeep Das

The state of the contract can have inconsistencies when the
send() function fails and is used without checking the response

Doesn’t revert the state when send() fails

Vulnerability

©Souradeep Das

Preventive Techniques

Use transfer(), which reverts the state if the external transaction fails

Favour Pull over Push Payments

Etherpot contract

Smart contract lottery, send function was unchecked.
Could indicate the user has been sent funds even when the send
function fails
Primary downfall due to incorrect use of blockhashes

©Souradeep Das

©Souradeep Das

To create a
wallet

1 2

Store Money

Withdraw

©Souradeep Das

Challenge 3

©Souradeep Das

The length of the array can be increased by dummy transactions

When the Block gas limit exceeds withdraw will not be
possible

©Souradeep Das

7. Time manipulation

GovernMental

©Souradeep Das

block.timestamp or now can be manipulated by miners if they
have some incentive to do so.

The timestamp should not be a base for the contract logic

Vulnerability

©Souradeep Das

Preventive Techniques

Block.timestamp should not be used for generating random numbers

Block.number could be used instead for time-sensitive logic indirectly

GovernMental
Also prone to the timestamp vulnerability

Contract paid out to player that joined last. Miners could
manipulate the time slightly to break the game.

©Souradeep Das

Contract

Dog Charity

©Souradeep Das

Challenge 4

©Souradeep Das

This actually happened!

Dynamic Pyramid changed its name to Rubixi, but somehow didn't rename the
constructor

Thanks!

©Souradeep Das

References

● OpenZeppelin
● ConsenSys
● Loom Network
● Dr Adrian Manning

©Souradeep Das

Best Practices
and Design

Patterns

“Every great
design begins
with an even
better story”
 ~Lorinda Mamo

©Souradeep Das

Circuit Breakers
Circuit Breakers are design patterns that allow contract functionality to
be stopped.Freezing the contract would be beneficial for
reducing harm before a fix can be implemented.

For example, if a bug has been found, you may stop users from
depositing while allowing people to withdraw

©Souradeep Das

Speed Bump
Speed Bumps are useful when malicious events occur as it gives the
owner time to act accordingly.

DAO had a speed bump, but no recovery options was present. Hence,
speed bumps should be used with circuit breakers.

©Souradeep Das

Fail Early Fail Loud
Check for errors in the beginning of the function

©Souradeep Das

require(), assert(), Or revert() ?

if(msg.sender != owner) { throw; }

Can be written as -

● if(msg.sender != owner) { revert(); }

● assert(msg.sender == owner);

● require(msg.sender == owner);

©Souradeep Das

Difference between assert() and require()

assert() uses all of the gas sent with the transaction
require() return the gas if an error is encountered

Then, why should i use assert() ?

It should be considered a normal and healthy occurrence for a
require() statement to fail.

When an assert() statement fails, something very wrong and
unexpected has happened, and you need to fix your code.

©Souradeep Das

revert()

1. Allows to return a value or an error message

 revert(‘Something bad happened’);

 require(condition, ‘Something bad happened’);

2. Refund the remaining gas to the caller

 When a contract throws it uses up any remaining gas.
 This can result in a very generous donation to miners, and often ends up
 costing users a lot of money.

©Souradeep Das

Checks-Effects-Interaction Pattern
1. Functions should start with checks in the beginning (if any)

 require(), assert(), revert()

2. Changes to state variables or In-contract execution

3. Interaction/ Calling functions of other contracts

©Souradeep Das

Auditing Tools

“Be sure you
put your
feet in the right
place, then
stand firm”

 ~Abraham Lincoln

©Souradeep Das

SmartCheck
Online Static Code analyzer

Oyente
Static analysis tool for finding common vulnerabilities

Mythrill
Reversing and bug hunting framework for Ethereum

Solgraph
Generates a DOT graph that visualizes function control flow of a Solidity
contract and highlights potential security vulnerabilities

Surya
Visual outputs and information on contract structure

Securify
Online Audit tool for static analysis

©Souradeep Das

OpenZeppelin Libraries
OpenZeppelin is a framework of re-usable smart contracts for
Ethereum
Tested, secure smart contract libraries, reduces the risk of
vulnerabilities
Includes libraries for ERC-20, ERC-721, SafeMath etc

Ethereum Package Manager (EthPM)

EthPM is essentially npm for Ethereum contracts
Several secure smart contract packages

Better to use pre-written verified and secure code.

©Souradeep Das

Vyper- The
secure smart

contract
language

“Every sunset
brings the
promise of a
new dawn”

 ~Ralph Waldo Emerson

©Souradeep Das

Vyper is a Python 3 derived programming language for Ethereum
Smart contracts, and an alternative to Solidity.

Principles
Security: It should be possible and natural to build secure
smart-contracts in Vyper.

Language and compiler simplicity: The language and the compiler
implementation should strive to be simple.

Auditability: Vyper code should be maximally
human-readable.Simplicity for the reader is more important than
simplicity for the writer.

©Souradeep Das

Goals
Bounds and overflow checking

Support for signed integers and decimal fixed point numbers

Strong typing: support for units (e.g. timestamp, timedelta, seconds, wei, wei per
second, meters per second squared).

Small and understandable compiler code

Vyper was not created to replace Solidity, it was created for having a
secure smart contracting solution.

There are certain things which Vyper cannot do, that Solidity can!

©Souradeep Das

Vyper vs Solidity
Vyper doesn't have-

● Modifiers
● Inheritance
● Inline assembly
● Function overloading
● Recursive calling
● Infinite-length types

Get started with Vyper at https://vyper.online/

©Souradeep Das

Show time

Lets learn to write a smart contract in Vyper!

©Souradeep Das

©Souradeep Das

➢ 50 Tickets available for auction

➢ Your Bid is secret until everyone
finishes bidding

➢ Top 50 bids win tickets

©Souradeep Das

1st Phase - Bid

2nd Phase - Reveal

+HASH()

contract

Bid amount secret

After Bidding is over -->

HASH()
Bid amount secret

+ check

©Souradeep Das

3rd Phase - Withdraw/ Refund

Excess money for Masking, refunded

Winners :

Non-Winners :

Refund extra money after deducting bid
amount

Refund the whole amount

©Souradeep Das

Thanks!
Contact Me:

souradeep.tech
dsouradeep2@gmail.com

: souradeep-das

: souradeep-das

: thedeepdas

